Scavenger Receptor Class A Plays a Central Role in Mediating Mortality and the Development of the Pro-Inflammatory Phenotype in Polymicrobial Sepsis

نویسندگان

  • Tammy R. Ozment
  • Tuanzhu Ha
  • Kevin F. Breuel
  • Tiffany R. Ford
  • Donald A. Ferguson
  • John Kalbfleisch
  • John B. Schweitzer
  • Jim L. Kelley
  • Chuanfu Li
  • David L. Williams
چکیده

Sepsis is a frequent complication in critical illness. The mechanisms that are involved in initiation and propagation of the disease are not well understood. Scavenger receptor A (SRA) is a membrane receptor that binds multiple polyanions such as oxidized LDL and endotoxin. Recent studies suggest that SRA acts as a pattern recognition receptor in the innate immune response. The goal of the present study was to determine the role of SRA in polymicrobial sepsis. SRA deficient (SRA(-/-)) and C57BL/6JB/6J (WT) male mice were subjected to cecal ligation and puncture (CLP) to induce polymicrobial sepsis. NFκB activity, myeloperoxidase activity, and co-association of SRA with toll like receptor (TLR) 4 and TLR2 was analyzed in the lungs. Spleens were analyzed for apoptosis. Serum cytokines and chemokines were assayed. Blood and peritoneal fluid were cultured for aerobic and anaerobic bacterial burdens. Long-term survival was significantly increased in SRA(-/-) septic mice (53.6% vs. 3.6%, p < 0.05) when compared to WT mice. NFκB activity was 45.5% lower in the lungs of SRA(-/-) septic mice versus WT septic mice (p < 0.05). Serum levels of interleukin (IL)-5, IL-6, IL-10 and monocyte chemoattractant protein -1 were significantly lower in septic SRA(-/-) mice when compared to septic WT mice (p < 0.05). We found that SRA immuno-precipitated with TLR4, but not TLR2, in the lungs of WT septic mice. We also found that septic SRA(-/-) mice had lower bacterial burdens than WT septic mice. SRA deficiency had no effect on pulmonary neutrophil infiltration or splenocyte apoptosis during sepsis. We conclude that SRA plays a pivotal, and previously unknown, role in mediating the pathophysiology of sepsis/septic shock in a murine model of polymicrobial sepsis. Mechanistically, SRA interacts with TLR4 to enhance the development of the pro-inflammatory phenotype and mediate the morbidity and mortality of sepsis/septic shock.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

IL-17 receptor signaling is required to control polymicrobial sepsis

Sepsis is a systemic inflammatory response resulting from the inability of the host to contain the infection locally. Previously, we demonstrated that during severe sepsis there is a marked failure of neutrophil migration to the infection site, which contributes to dissemination of infection, resulting in high mortality. IL-17 plays an important role in neutrophil recruitment. Herein, we invest...

متن کامل

Adrenocortical scavenger receptor class B type I deficiency exacerbates endotoxic shock and precipitates sepsis-induced mortality in mice.

Scavenger receptor class B type I (SR-BI)-deficient mice display reduced survival to endotoxic shock and sepsis. The understanding of the mechanisms underlying SR-BI protection has been hampered by the large spectrum of SR-BI functions and ligands. It notably plays an important role in the liver in high-density lipoprotein metabolism, but it is also thought to participate in innate immunity as ...

متن کامل

P 96: Role of Thrombin in Inflammatory Central Nervous System (CNS) Diseases

Thrombin is a multifunctional enzyme which has key roles in coagulation cascade and inflammatory events. The pro-inflammatory functions of thrombin occur by different mechanisms including increasing mast cell degranulation, up-regulating the expression of cell adhesion molecules (CAMs) and promoting the secretion of inflammatory chemokines and cytokines. Dysregulated signaling functions of thro...

متن کامل

Impact of Duration and Severity of Persistent Pain on Programmed Cell Death

Programmed cell death is a highly regulated form of cell death, mostly distinguished by the activation of a family of cystein-aspartate proteases (caspases) that cleave various proteins resulting in morphological and biochemical changes characteristic of this form of cell death. Several recent studies have addressed the role of programmed cell death in inflammatory and chronic pain states. Casp...

متن کامل

Impact of Duration and Severity of Persistent Pain on Programmed Cell Death

Programmed cell death is a highly regulated form of cell death, mostly distinguished by the activation of a family of cystein-aspartate proteases (caspases) that cleave various proteins resulting in morphological and biochemical changes characteristic of this form of cell death. Several recent studies have addressed the role of programmed cell death in inflammatory and chronic pain states. Casp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2012